Home >

Bose-Einstein condensate

Quantum Computer with Superconductivity at Room Temperature

Quantum Computer with Superconductivity at Room Temperature

Quantum computer with superconductivity at room temperature is going to change the landscape of artificial intelligence. In the earlier article we have discussed quantum computing algorithms for artificial intelligence.  In this article we reviewed the implication of superconductivity at room temperature on quantum computation and its impact on artificial intelligence.   

Long coherence time (synchronized), low error rate and high scalability are the three prime requirements for quantum computing.  To overcome these problems, presently, quantum computer needs complex infrastructure involving high-cooling and ultra-high vacuum. This is to keep atomic movement close to zero and contain the entangled particles, both of which reduce the likelihood of decoherence. The availability of superconductivity at room temperature will provide the quantum jump in quantum computer. 

Quantum Computer with Superconductivity at Room Temperature

Read More »Quantum Computer with Superconductivity at Room Temperature

Spin-orbit Coupling Qubits for Quantum Computing

Spin-orbit Coupling Qubits for Quantum Computing and AI

The Power of Spin-orbit Coupling Qubits for Quantum Computing

Here, Dr. Amit Ray discusses the power, scope, and challenges of Spin-orbit Coupling Qubits for Quantum Computing with Artificial Intelligence in details. Quantum computing for artificial intelligence is one of the key research project of Compassionate AI Lab. We summarize here some of the recent developments on qubits and spin–orbit coupling  for quantum computing. 

In digital computing, information is processed as ones and zeros, binary digits (or bits). The analogue to these in quantum computing are known as qubits. The qubits are implemented in nanoscale dimensions, such as spintronic, single-electron devices and ultra-cold gas of Bose-Einstein condensate state devices. Manipulation and measurement of the dynamics of the quantum states before decoherence are the primary characteristic of quantum computing. 

 

Quantum Computing with AI

Involving electron spin  in designing electronic devices with new functionalities, and achieving quantum computing with electron spins is among the most ambitious goals of  compassionate artificial superintelligence – AI 5.0.  Utilizing quantum effects like quantum superposition, entanglement, and quantum tunneling for computation is becoming an emerging research field of quantum computing based artificial intelligence. 

Read More »Spin-orbit Coupling Qubits for Quantum Computing and AI