compassionate AI

Key Artificial Intelligence Projects to Fight Against COVID-19https://amitray.com/artificial-intelligence-to-fight-against-covid-19/

Artificial Intelligence to Fight Against COVID-19

Key Artificial Intelligence Projects to Fight Against COVID-19

Dr. Amit Ray 
Compassionate  AI Lab 

Prevention and early healing are the primary requirements for the present COVID crisis. In our Compassionate AI Lab, we broadly classified our fight against COVID 19 Artificial intelligence (AI) based research projects into six groups. They are AI for COVID vaccine development, AI for COVID drug discovery, AI for COVID diagnosis, AI for COVID testing, AI for COVID growth rate forecasting, and AI for social robots.

AI to Fight COVID 19 Researches Sri Amit Ray Compassionate AI Lab

AI to Fight COVID 19 Researches Sri Amit Ray Compassionate AI Lab

Read More »Artificial Intelligence to Fight Against COVID-19

What’s Holding Back Machine Learning in Healthcare

What is holding back the large scale implementation of machine learning systems in healthcare and precision medicine? In this article Dr. Amit Ray, explains the key obstacles and challenges of  implementing large-scale machine learning systems in healthcare.   Dr. Ray argued that lack of deeper integration, incomplete understanding of the underlying molecular processes of disease it is intended to treat, may limit the progress of implementing large-scale machine learning based reliable systems in healthcare. Here, nine obstacles of present day machine learning systems in healthcare are discussed. 

What Holding Back Machine Learning in Healthcare

Machine Learning in Healthcare

Recently, machine learning algorithms, especially deep learning has shown impressive performance in many areas of medical science, especially in classifying imaging data in different clinical domains. In academic environment, Deep learning and Reinforcement learning methods of Artificial Intelligence (AI) has shown tremendous success in numerous clinical areas such as: Omics data integration (such as genomics, proteomics or metabolomics), prediction of drug-disease correlation based on gene expression, and finding combinations of drugs that should not be taken together. Deep learning is very successful in predicting cancer outcome based on tumour tissue images. Machine learning are used for medical decision support systems for ICU and critical care. Artificial Intelligence in Healthcare Current Trends discusses the current status of AI in healthcare. Read More »What’s Holding Back Machine Learning in Healthcare

AI for Balance-Control Fall Detection of Elderly People

Artificial Intelligence for Balance Control and Fall Detection of Elderly People

Balance control in elderly people is one of the key issues of old age. Artificial Intelligence can play a big role to solve this issue. In this research work, we demonstrate the application of machine learning techniques for posture alignments and the control of the body center of mass for disable people.

Designing automated balance control system for elderly people is one of the key project  of our Compassionate AI Lab. Here, Dr. Amit Ray discuses about one of the recent project of AI using deep learning algorithms for automatic balance control of elderly people. He explains how machine learning algorithms can be used to study and improve the dynamical properties of postural stability of elderly people. The project focuses on how image recognition, human-body joint dynamics, and path navigation methods of artificial intelligence can be used  to eliminate the imbalance, fall and injury of elderly people or for physically challenged people.

AI for Balance-Control Fall Detection of Elderly People

Compassionate Artificial Intelligence can be used for helping elderly people in many ways. Here, we discuss about one of our recent project of using AI & deep learning techniques for automatic balance control. The machine learning algorithms are used to improve dynamical properties of postural stability. In this project AI based machine learning algorithms are used to find the insights into the person specific postural strategies for older adults in order to adapt to the postural challenges during sleeping, standing, turning and walking. To study the body movement behavior of elderly people accurately, it is necessary to observe and record their movement trajectory and joint movements quantitatively and precisely in three dimensions.Read More »Artificial Intelligence for Balance Control and Fall Detection of Elderly People

Artificial Intelligence to Combat Antibiotic Resistant Bacteria

Artificial Intelligence to Combat Antibiotic Resistant Bacteria

Artificial Intelligence to Combat Antibiotic Resistant Bacteria

Artificial Intelligence to Combat Antibiotic Resistant Bacteria – tools, techniques, models, scopes and challenges are discussed. Antibiotic resistance bacteria is one of the key research area of our Compassionate AI Lab. Dr. Amit Ray explains how artificial intelligence can be used in combating these superbugs. Antibiotic resistance bacteria is becoming world’s biggest health crisis. We discussed here multi-agent deep reinforcement learning models for predicting behavior of bacteria and phages in multi-drug environments.  We call this model as DeepCombat. 

Artificial Intelligence to Combat Antibiotic Resistant Bacteria

Antibiotic resistant bacteria are bacteria that are not controlled or killed by antibiotics. They are able to survive and even multiply in the presence of an antibiotic.  These bacteria currently kill an estimated 700,000 people globally each year – a death toll which could rise to 10 million a year by 2050 if we don’t act [1]. The main difficulty is that the bacteria are changing fast. They changing faster than we can change the drugs in response.

 Artificial intelligence is showing alternative means of fighting these deadly infections and killer bacteria. Multi-drug-resistant bacterial infections annually result in millions of hospital days, billions in healthcare costs, and, most importantly, thousands of lives lost. Artificial Intelligence for healthcare is progressing at an exponential rate.  We are evaluating here, the role of artificial intelligence in fighting these superbugs.  Especially, the use of AI for intelligent Phage therapy.Read More »Artificial Intelligence to Combat Antibiotic Resistant Bacteria

Artificial intelligence for Assisting Blind People

Do you know according to WHO, there are about 39 million people in the world who are blind? Artificial Intelligence is one of our key research area to overcome that challenge. Here, we explain the use of AI based grid cell, place cell and path integration strategies to solve the problems.

Dr. Amit Ray explains how grid cell, place cell and path integration strategies with artificial intelligence can be used  for designing the navigation system for blind people. Here, we discuss the use of AI techniques for automatic navigation. Read More »Artificial intelligence for Assisting Blind People

Brain-Computer Interface and Compassionate Artificial Intelligence to Serve Humanity

Brain-Computer Interface and Compassionate Artificial Intelligence

Dr. Amit Ray

The purpose of Compassionate AI is to remove the pain from the society and help humanity. We focused on developing AI based low cost BCI based interfaces for helping disable people.

Artificial Intelligence with Brain-Computer Interface (BCI) or Brain Machine Interface (BMI) is a fast-growing emerging technology for removing pains from the society. Here,  Dr. Amit Ray explains how with the advancement of artificial intelligence and exploration of new mobile bio-monitoring  devices, earphones, neuroprosthetic, wireless  wearable sensors, it is possible to monitor  thoughts and activities of brain neurons  and serve humanity.

This research is going to be immensely  beneficial for the physically and mentally challenged people as well as for the people who are suffering from post-traumatic stress disorder (PTSD), and other mental disorders or brain problems. Over the last 5 years, technologies for non-invasive transmission of information from brains to computers have developed considerably.

Brain-Computer Interface and Compassionate AI

Here, researchers focus to build a direct communication link between the human brain and the smartphones, earphone, computers or other devices. With BCI mind can speak silently with a smartphone or other devices.  Recent advancement of neuroprosthetic, linking the human nervous system to computers and providing unprecedented control of artificial limbs and restoring lost sensory function.

 BCI establishes two way communications between the brain and the machine.  One is  brain-computer interface and another is called computer-brain interfaces (CBI). BCI hopes to create new communication channels for disabled or elderly persons using their brain signals. Read More »Brain-Computer Interface and Compassionate Artificial Intelligence to Serve Humanity

GPUs and Deep Learning for Compassionate Artificial Intelligence

GPUs and Deep Learning for Compassionate Artificial Intelligence

Dr. Amit Ray discusses how GPUs and deep learning can be used for developing complex modules of the compassionate artificial intelligence. GPUs and cloud TPUs made complex deep learning of artificial intelligence possible in laptop, PC and smartphone. They made complex deep learning possible for research labs and smaller companies across the world. They provided a lot more computing power and efficiency for complex matrix operations and parallel processing. 

GPUs and TPUs for Deep Learning 

One of AI’s biggest potential benefits is to keep humanity healthy, happy and free from inequalities and slavery. The role of AI is gradually changing. It is shifting from typical object recognition or diagnosis tool, to complex human like powerful integrated compassionate care giving systems. Compassionate AI is one area where AI is beginning to take strong hold. Here, Dr. Ray explains the implementation of deep learning modules of integrated compassionate care giving systems with GPUs and TPUs . 

Compassionate AI GPUs and Deep LearningTraining of complex compassionate artificial intelligence modules requires deep learning neural networks. Training of compassionate modules are more time‐consuming compared to shallow learning models of AI. They may take months, weeks, days or hours depending on the size of training set and model architecture. This is because the number of computational steps increases rapidly with the number of elements in the matrix.… Read more..