decoherence

Roadmap for 1000 Qubits Fault-tolerant Quantum Computers

How many qubits are needed to out-perform conventional computers, how to protect a quantum computer from the effects of decoherence and how to design more than 1000 qubits fault-tolerant large scale quantum computers, these are the three basic questions we want to deal in this article.  Qubit technologies, qubit quality, qubit count, qubit connectivity and qubit architectures are the five key areas of quantum computing are discussed.

Roadmap for 1000 Qubits Fault-tolerant Quantum Computers

Earlier we have discussed 7 Core Qubit Technologies for Quantum Computing, 7 Key Requirements for Quantum Computing.  Spin-orbit Coupling Qubits for Quantum Computing and AIQuantum Computing Algorithms for Artificial IntelligenceQuantum Computing and Artificial Intelligence , Quantum Computing with Many World Interpretation Scopes and Challenges and Quantum Computer with Superconductivity at Room Temperature. Here, we will focus on practical issues related to designing large-scale quantum computers. 

Instead of running on zeros and ones, quantum computers run on an infinite number of states between zero and one. Instead of performing one calculation before moving on to the next, quantum computers can manage multiple processes all simultaneously. 

Unlike binary bits of information in ordinary computers, “qubits” consist of quantum particles that have some probability of being in each of two states, represent as |0⟩ and |1⟩, simultaneously. When qubits interact, their possible states become interdependent (entangled), each one’s chances of |0⟩ and |1⟩ hinging on those of the other. Moreover, quantum information does not have to be encoded into binary bits, it could also be encoded into continuous observables bits (qubits). 

The speed requirements for various applications grows with the complexity of the problems and the speed advantage of quantum computers are enormous compare to classical computers.  The key to quantum computation speed is that every additional qubit doubles the potential computing power of a quantum machine. 

The objective of 1000 qubits fault-tolerant quantum computing is to compute accurately even when gates have a high probability of error each time they are used. Theoretically, accurate quantum computing is possible with error probabilities above 3% per gate, which is significantly high. The resources required for quantum computing depends on the error probabilities of the gates. It is possible to implement non-trivial quantum computations at error probabilities as high as 1% per gate.Read More »Roadmap for 1000 Qubits Fault-tolerant Quantum Computers

Requirements for Quantum Computing

7 Key Requirements for Quantum Computing

Here, we discussed seven key  requirements for implementing efficient quantum computing systems. The seven key requirements are long coherence time, high scalability, high fault tolerance, ability to initialize qubits, universal quantum gatesefficient qubit state measurement capability, and faithful transmission of flying qubits.  They are seven guidelines for designing effective quantum computing systems. 

Requirements for QC

Quantum computing is the key technology for future artificial intelligence. In our Compassionate AI Lab, we are using AI based quantum computing algorithms for human emotion analysis, simulating human homeostasis with quantum reinforcement learning and other quantum compassionate AI projects.   This tutorial is for the researchers, volunteers and students of the Compassionate AI Lab for understanding the deeper aspects of quantum computing for implementing compassionate artificial intelligence projects. 

Earlier we have discussed Spin-orbit Coupling Qubits for Quantum Computing and AI Quantum Computing Algorithms for Artificial IntelligenceQuantum Computing and Artificial Intelligence and Quantum Computer with Superconductivity at Room Temperature. Here, we will focus on the exact requirements for developing efficient quantum computers. 

Building a quantum computer differs greatly from building a classical computer. The core of quantum computing is qubits.  Qubits are made using single photons, trapped ions, and atoms in high finesse cavities. Superconducting materials and  semiconductor quantum dots are promising hosts for qubits to build a quantum processor. When superconducting materials are cooled, they can carry a current with zero electrical resistance without losing any energy. These seven requirements refereed as DiVincenzo criteria for quantum computing [1]. 

Requirements for Quantum ComputingRead More »7 Key Requirements for Quantum Computing