Spin-orbit Coupling Qubits for Quantum Computing and AI
The Power of Spin-orbit Coupling Qubits for Quantum Computing
Here, Dr. Amit Ray discusses the power, scope, and challenges of Spin-orbit Coupling Qubits for Quantum Computing with Artificial Intelligence in details. Quantum computing for artificial intelligence is one of the key research project of Compassionate AI Lab. We summarize here some of the recent developments on qubits and spin–orbit coupling for quantum computing.
In digital computing, information is processed as ones and zeros, binary digits (or bits). The analogue to these in quantum computing are known as qubits. The qubits are implemented in nanoscale dimensions, such as spintronic, single-electron devices and ultra-cold gas of Bose-Einstein condensate state devices. Manipulation and measurement of the dynamics of the quantum states before decoherence are the primary characteristic of quantum computing.
Involving electron spin in designing electronic devices with new functionalities, and achieving quantum computing with electron spins is among the most ambitious goals of compassionate artificial superintelligence – AI 5.0. Utilizing quantum effects like quantum superposition, entanglement, and quantum tunneling for computation is becoming an emerging research field of quantum computing based artificial intelligence.
Read More »Spin-orbit Coupling Qubits for Quantum Computing and AI