AI Lab

Quantum Computer with Superconductivity at Room Temperature

Quantum Computer with Superconductivity at Room Temperature

Quantum computer with superconductivity at room temperature is going to change the landscape of artificial intelligence. In the earlier article we have discussed quantum computing algorithms for artificial intelligence.  In this article we reviewed the implication of superconductivity at room temperature on quantum computation and its impact on artificial intelligence.   

Long coherence time (synchronized), low error rate and high scalability are the three prime requirements for quantum computing.  To overcome these problems, presently, quantum computer needs complex infrastructure involving high-cooling and ultra-high vacuum. This is to keep atomic movement close to zero and contain the entangled particles, both of which reduce the likelihood of decoherence. The availability of superconductivity at room temperature will provide the quantum jump in quantum computer. 

Quantum Computer with Superconductivity at Room Temperature

Read More »Quantum Computer with Superconductivity at Room Temperature

Quantum Computing Algorithms for Artificial Intelligence

Quantum Computing Algorithms for Artificial Intelligence

Dr. Amit Ray explains the quantum annealing, Quantum Monte Carlo Tree Search, Quantum algorithms for traveling salesman problems, and Quantum algorithms  for gradient descent problems in depth.

This tutorial is for the researchers, developers, students and the volunteers of the quantum computing team of the  Sri Amit Ray Compassionate AI Lab. Many of our researchers and students asked me to explain the quantum computing algorithms in a very simplistic term.  The purpose of this article is to explain that.

Quantum Computing Algorithms for AI By Amit Ray

Earlier we have discussed Spin-orbit Coupling Qubits for Quantum Computing and the foundations of  Quantum computing and artificial intelligence.  This article is to explain the foundation quantum computing algorithms in depth in a simplistic way. Here we explained the concepts of quantum annealing, Quantum Monte Carlo Tree Search, quantum algorithms for traveling salesman problem and Quantum algorithms for gradient descent problems. Read More »Quantum Computing Algorithms for Artificial Intelligence

Artificial Intelligence to Combat Antibiotic Resistant Bacteria

Artificial Intelligence to Combat Antibiotic Resistant Bacteria

Artificial Intelligence to Combat Antibiotic Resistant Bacteria – tools, techniques, models, scopes and challenges are discussed. Antibiotic resistance bacteria is one of the key research area of our Compassionate AI Lab. Dr. Amit Ray explains how artificial intelligence can be used in combating these superbugs. Antibiotic resistance bacteria is becoming world’s biggest health crisis. We discussed here multi-agent deep reinforcement learning models for predicting behavior of bacteria and phages in multi-drug environments.  We call this model as DeepCombat. 

Artificial Intelligence to Combat Antibiotic Resistant Bacteria

Antibiotic resistant bacteria are bacteria that are not controlled or killed by antibiotics. They are able to survive and even multiply in the presence of an antibiotic.  These bacteria currently kill an estimated 700,000 people globally each year – a death toll which could rise to 10 million a year by 2050 if we don’t act [1]. The main difficulty is that the bacteria are changing fast. They changing faster than we can change the drugs in response.

 Artificial intelligence is showing alternative means of fighting these deadly infections and killer bacteria. Multi-drug-resistant bacterial infections annually result in millions of hospital days, billions in healthcare costs, and, most importantly, thousands of lives lost. Artificial Intelligence for healthcare is progressing at an exponential rate.  We are evaluating here, the role of artificial intelligence in fighting these superbugs.  Especially, the use of AI for intelligent Phage therapy.Read More »Artificial Intelligence to Combat Antibiotic Resistant Bacteria

Navigation System for Blind People Using Artificial Intelligence

Do you know according to WHO, there are about 39 million people in the world who are blind? Artificial Intelligence is one of our key research area to overcome that challenge. Here, we explain the use of AI based grid cell, place cell and path integration strategies to solve the problems.

Dr. Amit Ray explains how grid cell, place cell and path integration strategies with artificial intelligence can be used  for designing the navigation system for blind people. Here, we discuss the use of AI techniques for automatic navigation. Read More »Navigation System for Blind People Using Artificial Intelligence

Brain-Computer Interface and Compassionate Artificial Intelligence to Serve Humanity

Brain-Computer Interface and Compassionate Artificial Intelligence

Dr. Amit Ray

The purpose of Compassionate AI is to remove the pain from the society and help humanity. We focused on developing AI based low cost BCI based interfaces for helping disable people.

Artificial Intelligence with Brain-Computer Interface (BCI) or Brain Machine Interface (BMI) is a fast-growing emerging technology for removing pains from the society. Here,  Dr. Amit Ray explains how with the advancement of artificial intelligence and exploration of new mobile bio-monitoring  devices, earphones, neuroprosthetic, wireless  wearable sensors, it is possible to monitor  thoughts and activities of brain neurons  and serve humanity.

This research is going to be immensely  beneficial for the physically and mentally challenged people as well as for the people who are suffering from post-traumatic stress disorder (PTSD), and other mental disorders or brain problems. Over the last 5 years, technologies for non-invasive transmission of information from brains to computers have developed considerably.

Brain-Computer Interface and Compassionate AI

Here, researchers focus to build a direct communication link between the human brain and the smartphones, earphone, computers or other devices. With BCI mind can speak silently with a smartphone or other devices.  Recent advancement of neuroprosthetic, linking the human nervous system to computers and providing unprecedented control of artificial limbs and restoring lost sensory function.

 BCI establishes two way communications between the brain and the machine.  One is  brain-computer interface and another is called computer-brain interfaces (CBI). BCI hopes to create new communication channels for disabled or elderly persons using their brain signals. Read More »Brain-Computer Interface and Compassionate Artificial Intelligence to Serve Humanity