Quantum Computing Algorithms for Artificial Intelligence

Quantum Computing Algorithms for Artificial Intelligence

Dr. Amit Ray explains the quantum annealing, Quantum Monte Carlo Tree Search, Quantum algorithms for traveling salesman problems, and Quantum algorithms  for gradient descent problems in depth.

This tutorial is for the researchers, developers, students and the volunteers of the quantum computing team of the  Sri Amit Ray Compassionate AI Lab. Many of our researchers and students asked me to explain the quantum computing algorithms in a very simplistic term.  The purpose of this article is to explain that.

Quantum Computing Algorithms for AI By Amit Ray

Earlier we have discussed Spin-orbit Coupling Qubits for Quantum Computing and the foundations of  Quantum computing and artificial intelligence.  This article is to explain the foundation quantum computing algorithms in depth in a simplistic way. Here we explained the concepts of quantum annealing, Quantum Monte Carlo Tree Search, quantum algorithms for traveling salesman problem and Quantum algorithms for gradient descent problems. 

Quantum Computing Basics

Rather than store information using bits represented by 0s or 1s as in classical digital computers do, quantum computers use quantum bits, or qubits, to encode information as 0s, 1s, or both at the same time. This superposition of states—along with the other quantum mechanical phenomena of entanglement and tunneling—enables quantum computers to manipulate enormous combinations of states at once. The measurement in a quantum computer is performed by measuring the states of the qubits (charge, spin, angular momentum etc.).

Mainly there are four types implementation of qubits: spin qubits, photon qubits, flux qubits and charge qubits. We in Computational AI Lab, focus on implementing quantum computing with photonic qubits and solid state spin qubits in an integrated structure.