quantum architectures

Roadmap for 1000 Qubits Fault-tolerant Quantum Computers

How many qubits are needed to outperform conventional computers? How to protect a quantum computer from the effects of decoherence? And how to design more than 1,000 qubits fault-tolerant large-scale quantum computers? These are the three basic questions we want to deal in this article.

Qubit technologies, qubit quality, qubit count, qubit connectivity and qubit architectures are the five key areas of quantum computing. In this article, we explain the practical issues of designing large-scale quantum computers. 

Roadmap for 1000 Qubits Fault-tolerant Quantum Computers

Read More »Roadmap for 1000 Qubits Fault-tolerant Quantum Computers

Quantum Computing with Many World Interpretation Scopes and Challenges

The Many-Worlds Interpretation (MWI) of quantum mechanics posits that all possible outcomes of quantum measurements are realized, each in a separate, non-communicating branch of the universe. This interpretation challenges the traditional Copenhagen view, which involves wave function collapse to a single outcome. In the context of quantum computing, MWI offers a framework for understanding quantum parallelism—the ability of quantum computers to process multiple computations simultaneously.

In this article, we explore how MWI aligns with quantum computing’s principles, the opportunities it presents, and the challenges we must address to harness its full potential.

Quantum Computing with Many World Interpretation

Many scientists believe that Many Worlds Interpretation (MWI) of quantum mechanics is self-evidently absurd for quantum computing. However, recently, there are many groups of scientists increasingly believing that MWI has the real future in quantum computing, because MWI can provide true quantum parallelism.  Here, I briefly discuss the scopes and challenges of MWI for future quantum computing for exploration into the deeper aspects of qubits and quantum computing with MWI. 

This tutorial is for the researchers, volunteers and students of the Compassionate AI Lab for understanding the deeper aspects of quantum computing for implementing large-scale compassionate artificial intelligence projects. 

Read More »Quantum Computing with Many World Interpretation Scopes and Challenges

Spin-orbit Coupling Qubits for Quantum Computing and AI

The Power of Spin-orbit Coupling Qubits for Quantum Computing

Here, Dr. Amit Ray discusses the power, scope, and challenges of Spin-orbit Coupling Qubits for Quantum Computing with Artificial Intelligence in details. Quantum computing for artificial intelligence is one of the key research projects of Compassionate AI Lab. We summarize here some of the recent developments on qubits and spin–orbit coupling for quantum computing. 

In digital computing, information is processed as ones and zeros, binary digits (or bits). The analogue to these in quantum computing are known as qubits. The qubits are implemented in nanoscale dimensions, such as spintronic, single-electron devices and ultra-cold gas of Bose-Einstein condensate state devices. Manipulation and measurement of the dynamics of the quantum states before decoherence are the primary characteristic of quantum computing. 

Quantum Computing with AI

Involving electron spin in designing electronic devices with new functionalities and achieving quantum computing with electron spins is among the most ambitious goals of compassionate artificial superintelligence – AI 5.0.  Utilizing quantum effects like quantum superposition, entanglement, and quantum tunneling for computation is becoming an emerging research field of quantum computing based artificial intelligence. 

Read More »Spin-orbit Coupling Qubits for Quantum Computing and AI